

Missing data DTW-based imputation

Poisson-caillault Emilie, Phan Thi-Thu-Hong, Lefebvre Alain

ULCO-LISIC, EA 4491, Universite du Littoral Côte d'Opale, FR-62228 Calais

IFREMER, Laboratoire Environnement et Ressources, FR-62321, Boulogne-sur-mer

VNUA, Vietnam National University of Agriculture, Hanoï, Vietnam

PUBLIQUE FRANÇAIS

DE LA RÉGION

18/10/2021 - JERICO S3 WP4 EC & NS PSS seminar

LISIC Observation networks : multi-sources

Collecting lots of time series data (big data)

Problems:

- Collected data have missing values due to sensor or communication/transmission problems
- Most of Classification and prediction tools require completed data

Any available solution?

- Deleting some observations
- Imputation data

Which methods to deal with missing marine observations ?

- 1- Nature of the missing data : MCAR, MAR, NMAR \leftrightarrow not so easy to define.
- 2- Isolated missing values / Gap=missing consecutive values
- 3- Complex data, low cross-correlation
- 3- Quick change in the dynamics of the studied process.

=> Adapted algorithm, results must be

- efficient: having minimal standard errors
- reliable/effective: respecting curve-shape and dynamics process/changes.

Which methods to deal with missing marine observations

- => Adapted algorithm, results must be
- efficient: having minimal standard errors
- reliable/effective: respecting curve-shape and dynamics process/changes.

Case of Isolated missing values in univariate times series

-> Usual methods : local averages, interpolation, regression.

But for gap?

Kaggle dataset. Univariate time series.

na.interp only respects the pattern shape

Solution for Isolated missing values in univariate times series

-> Usual methods : local averages, interpolation, regression.

And large gap?

Efficient but no respect for the pattern shape.

Solution for multivariate times series

- MI- **Multiple Imputation**: predicts imputed value by finding an observation (from available values) with the closest predictive mean to that variable containing missing values for each observation.

MICE - Multivariate Imputation via Chained Equations: estimate imputed values based on the conditional distribution (on all of other variables) for each variable containing missing values.
 na.approx (zoo package): uses a generic function with interpolated values to estimate each missing data.

- **missForest**: for each variable missForest builds a random forest model on the observed part. Then this model is used to predict missing values in the variable. (look at the code : fill by means !)

- k-nearest neighbors

-> No efficiency / no shape respect for large gap

Goal and Trade off.

Idea

Proposed approach

Focus on Marel Carnot Dataset

Dataset MAREL Carnot

High frequency instrumented station (HF) 20 minutes sampling

Tests based on 4 years (2005-2009)

- 9 Essential Ocean Variables :
- Temperature
- Salinity
- Dissolved Oxygen
- Nitrate
- Phosphate
- Silicate
- Turbidity
- PAR (Photosynthetically Active Radiation)
- Fluorescence

http://data.coriolis-cotier.org/

Completion Protocol:

T-gap: size T of consecutive missing values

completion size criterion: smallHole and acceptedHole

Completion steps:

1- Isolated points (T=1)-gap: completion by local average (t-1 and/or t+1)

2- small T-gap: completion by weighting local average of a mobile centered windows [t-T; t +T] T<**smallHole**

3- large T-gap: filling by existing recurrent pattern with DTW-matching (**smallHole** < T ≤ **acceptedHole**)

smallHole, acceptedHole depends on

- dynamics change
- subject of interest.

2

0

2015

1

Proposed approaches for large T>>1-gap:

- DTWBI : univariate iseries imputation based on DTW criterion
- DTWUMI : extension of DTWBI for multivariate series -

1995

- FSMUMI : Fuzzy Logic Theory -
- eDTWBI : add trend conservation contraints + future window -

2005

2010

2000

Illustration/Vocabulary:

Completion of one large gap by "DTW-similar" recurring pattern

Univariate signal

Similarity problem

- Given: two sequences $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_m\}$
- How to define and compute Sim(X, Y) according to acceptable time variability?

Euclidean distance vs. DTW

Signal comparison - **Euclidean distance** Metrics ?

Signal comparison - Euclidean distance Metrics ?

GMV=VG	$\exp(\overline{(\ln(q) - \ln(r))^2})$	min.	$\in {\rm I\!R^+}$	$+~0.75 \leq \mathrm{VG} \leq 1.25$
FA2	$\frac{1}{T} \operatorname{card}(0.5 \le q_i / r_i \le 2)$	max.	€ [0,1]	+ FA2 > 0.8
R ² Pearson	$(\frac{cov(q,r)}{\sigma_q \times \sigma_r})^2$	max.	€ [0,1]	++ $R^2 \ge 0.9$ p-value
FB	$2 imes rac{\overline{q} - \overline{r}}{\overline{q} + \overline{r}}$	min.	€ [−2,2]	$++ FB \leq 0.3$
GMB=BG	$\exp(\overline{\ln(q)} - \overline{\ln(r)})$	min.	$\in \mathrm{IR}^+$	$+ \ 0.75 \leq \mathrm{BG} \leq 1.25$
FS	$2\times \frac{ (\sigma_q)^2-(\sigma_r)^2 }{(\sigma_q)^2+(\sigma_r)^2}$	min.	€ [0,2]	++ FS ≤ 0.5
FSD	$2 \times \left \frac{\sigma_q - \sigma_r}{\sigma_q + \sigma_r} \right $	min.	€ [0,2]	++ FSD ≤ 0.5

bounded scores

Bold results = criterion is satisfied

ref1

ref2 ref3 ref4 ref5

que

	query	ref1	ref2	ref3	ref4	ref5
distMax	0.00	1.64	1.53	4.07	1.41	0.10
ME	0.00	0.27	-0.63	-3.13	-0.13	-0.05
VG	1.00	14.71	12.71	137.54	-	1.02
FA2	1.00	0.78	0.41	0.00	0.00	0.99
R2.cor	1.00	0.55	0.72	0.00	0.00	1.00
Bias	0.00	0.27	-0.63	-3.13	-0.13	-0.05
FB	0.00	-1.04	-3.33	-2.17	2.00	0.55
BG	1.00	1.33	0.78	0.18	-	0.98
FS	0.00	0.41	0.69	2.00	2.00	-0.00
FSD	0.00	0.21	0.36	2.00	2.00	0.00

-> no signal satisfies all criteria

$$X = \{(x_i), i = 1, \dots, n\}$$

$$Y = \{(y_j), j = 1, \dots, m\}$$

$$P = \{(i_k, j_k), k = 1, \dots, n_k\}$$

$$C(X, Y, P, W) = \frac{\sum_{k=1}^{n_k} d(x_{i_k}, y_{j_k}) . w(k)}{\sum_{k=1}^{n_k} w(k)}$$

$$= \frac{Dist(n, m)}{\sum_{k=1}^{n_k} w(k)}.$$

x

··· x,

	VG	FA2	R2.cor	FB	BG	FS	FSD
ref1-DTW	1.04	1.00	0.99	0.04	1.01	-0.01	0.00
ref1-DDTW	1.08	1.00	0.98	-0.05	0.97	0.14	0.07
ref1-AFBTDTW	1.06	1.00	0.99	-0.03	1.02	0.05	0.03
ref2-DTW	g.	0.96	0.96	-0.47	89.37	0.23	0.11
ref2-DDTW	83.98	0.41	0.33	-8.43	1.57	-0.50	0.25
ref2-AFBTDTW	3.63	0.42	0.92	-2.84	1.35	0.05	0.03
ref3-DTW	12.08	0.00	0.00	-1.30	0.39	2.00	2.00
ref3-DDTW	g.	0.00	0.00	-2.87	0.09	2.00	2.00
ref3-AFBTDTW	g.	0.00	0.00	-2.70	0.14	2.00	2.00
ref4-DTW	g.	0.00	0.00	2.00	g.	2.00	2.00
ref4-DDTW	g.	0.00	0.00	2.00	g.	2.00	2.00
ref4-AFBTDTW	g.	0.00	0.00	2.00	g.	2.00	2.00
ref5-DTW	1.04	0.99	1.00	0.19	1.07	-0.00	0.00
ref5-DDTW	1.05	0.94	0.99	0.68	0.99	-0.05	0.03
ref5-AFBTDTW	1.02	0.99	1.00	0.52	0.98	-0.01	0.00

Experiments - Univariate case

Imputation performance indicator

Accuracy indexes

- Similarity: the similar percentage between the imputed value (Y) and the respective true values (X)

- NMAE: The Normalized Mean Absolute Error between Y and X

- RMSE: The Root Mean Square Error average squared difference Y and X

Shape indexes

- FSD: Fraction of Standard Deviation between Y and X

Maximum cross-correlation between query and selected windows

-> recurrent patterns

Gap size		dataset													
	#1	#2	#3	#4	#5	#6	#7	#8							
6%	0.88	0.92	0.58	0.78	0.99	1	0.91	1							
7.50%	0.91	0.91	0.55	0.74	0.99	0.99	0.91	1							
10%	0.94	0.87	0.5	0.67	0.98	0.99	0.91	1							
12.50%	0.95	0.89	0.44	0.65	0.98	0.99	0.9	1							
15%	0.95	0.85	0.4	0.65	0.98	0.99	0.9	1							

#1-Airpassenger, #2-Beersales, #3-Google, #4-SP, #5-Co2 concentrations #6-Mackey-Glass chaotic, #7-Phu Lien temperature, #8-water level

N0	dataset name	instants	(Y/N)	(Y/N)	Frequency
1	Air passenger	144	Y	Y	Monthly
2	Beersales	192	Y	Y	Monthly
3	Google	521	N	N	Daily
4	SP	168	Y	Y	Quarterly
5	CO2 concentrations	160	Y	Y	Monthly
6	Mackey-Glass chaotic	1201	N	N	
7	Phu Lien temperature	648	Ν	Y	Monthly
8	Water level	131472	N	Y	20 minutes

Trand

Conconal

NIO of

Experiments - Univariate case

Phu Temperature

15% ~ 97 jours

Marel dataset Gap size/10 1.5% ~ 28 days

Gap size	Method		CO2 cond	centration	\$	Ν	lackey-Gl	ass Chaot	ic	Pł	hu Lien ter	nperature			Water	level	
		Sim	NMAE	RMSE	FSD	Sim	NMAE	RMSE	FSD	Sim	NMAE	RMSE	FSD	Sim	NMAE	RMSE	FSD
6%	DTWBI	0.93	0.001	0.3	0.04	0.95	0.005	0.01	0.03	0.88	0.06	1.7	0.08	0.95	0.009	0.1	0.05
	na.interp	0.75	0.055	1.6	1.5	0.79	0.031	0.04	0.81	0.8	0.142	3.1	0.63	0.81	0.042	0.5	1.05
	na.locf	0.73	0.059	1.7	2	0.77	0.036	0.05	2	0.77	0.173	3.8	2	0.8	0.043	0.4	2
	na.approx	0.75	0.055	1.6	1.5	0.79	0.031	0.04	0.81	0.8	0.142	3.1	0.63	0.81	0.042	0.5	1.05
	na.aggregate	0.45	0.185	4.7	2	0.82	0.025	0.03	2	0.83	0.114	2.4	2	0.83	0.035	0.4	2
	na.spline	0.75	0.057	1.6	0.75	0.65	0.072	0.09	0.38	0.61	0.413	8.5	0.52	0.3	0.654	6.6	1.61
15%	DTWBI	0.94	0.001	0.3	0.04	0.92	0.01	0.02	0.01	0.882	0.066	1.8	0.05	0.96	0.007	0.1	0.04
	na.interp	0.76	0.053	1.6	1.46	0.81	0.03	0.04	0.99	0.81	0.145	3.2	1	0.81	0.044	0.5	1.6
	na.locf	0.77	0.052	1.6	2	0.79	0.037	0.05	2	0.79	0.175	3.8	2	0.81	0.043	0.5	2
	na.approx	0.76	0.053	1.6	1.46	0.81	0.03	0.04	0.99	0.81	0.145	3.2	1	0.81	0.044	0.5	1.6
	na.aggregate	0.43	0.202	5.1	2	0.84	0.025	0.03	2	0.84	0.117	2.5	2	0.83	0.036	0.4	2
	na.spline	0.69	0.085	2.5	0.58	0.57	0.129	0.16	0.73	0.44	1.268	26.3	1.27	0.21	1.185	11.8	1.83
Gap size	Method		Airpa	ssenger			Bee	rsales			Goo	gle			SI	2	
		1-Sir	n NMAE	RMSE	FSD	1-Sin	n NMAE	RMSE	FSD	1- Sim	NMAE	RMSE	FSD	1- Sin	n NMAE	RMSE	FSD
15%	DTWBI	0.1	0.02	12.8	0.36	0.16	0.054	1	0.1	0.15	0.13	0.031	0.29	0.19	0.029	40.7	0.59
	na.interp	0.14	0.02	5 15.6	0.35	0.11	0.069	0.7	0.17	0.14	0.11	0.031	0.99	0.21	0.033	43.6	0.49
	na.locf	0.21	0.04	7 28.2	2	0.18	0.126	1.2	2	0.16	0.13	0.034	2	0.19	0.028	36.3	2
	na.prox	0.2	0.043	3 26.5	1.17	0.17	0.117	1.1	1.42	0.14	0.11	0.031	0.99	0.19	0.032	41	1
	na.aggregate	0.17	0.03	5 22.1	2	0.16	0.11	1.1	2	0.11	0.08	0.023	2	0.18	0.025	32	2
	na.spline	0.45	0.175	5 106.1	0.95	0.51	0.731	6.3	0.88	0.66	12.34	2.928	1.6	0.39	0.136	162.5	0.68

Experiments - Univariate case / comparison with random selection

Experiments - Univariate case / comparison with random selection

Efficiency - RMSE ?

Compare the RMSE of different methods on Airpass data

Shape respect - FSD ?

Compare the FSD of different methods on Airpass data

Multivariate dataset

- one-by-one independant filling
- multivariate similarity

Extended approach to multivariate signals - DTWUMI

Trapezoid filling of uncomplete signals during the sliding research.

1. Extract shape-features for Q and Reference

2. Select n References satisfying cosine criterion

3. Compute DTW cost of Q and each Reference

4. Select Qs having the the minimum DTW cost

5. Replace the missing values by previous window of Qs on the incomplete signal

Experiments multivariate signals - DTWUMI

N0	Dataset name	N0 of instants	Correlation (No/Low/High)	Frequency
1	NNGC	1,745	High	Hourly
2	Simulation	32,000	No	
3	MAREL-Carnot	35,344	Low	Hourly

Average imputation performance indexes of various imputation algorithms

				NNGC	dataset			Simulated dataset					Marel CARNOT dataset						
Gap size	Method	Acc	Accuracy indices		Sha	Shape indices		Accuracy indices		Sha	Shape indices		Accuracy indices			Sha	pe ind	lices	
		1-Sim	1 - R^2	RMSE	FSD	FB	1-FA2	1-Sim	1 - R^2	RMSE	FSD	FB	1-FA2	1-Sim	1 - R^2	RMSE	FSD	FB	1-FA2
1%	na.approx MI MICE	0.2 0.1 0.03	0.99 0.32 0.06	11786 5774 2382	0.41 0.02 0.03	0.19 0.01 0.01	0.52 0.26 0.05	0.126 0.14 0.14	0.994 0.999 0.997	1.99 2.22 2.23	0.52 0.12 0.13	1.86 1.89 2.39	0.81 0.79 0.79	0.068	0.15 0.44 0.46	1.62 4.48 4.51	0.07 0.42 0.37	0.03 0.24	0.21 0.48 0.39
1%	missForest DTWUBI	0.02 0.12	0.02 0.51	1286 7591	0.01 0.03	0.01 0.12	0.01 0.3	0.11 0.085	0.996 0.51	1.69 1.22	0.89 0.01	5.49 5.86	0.85 0.58	0.15 0.056	0.26 0.04	3.2 1.02	0.35 0.11	0.18 0.05	0.32 0.15
3%	na.approx MI MICE missForest DTWUBI	0.18 0.1 0.03 0.02 0.05	0.99 0.29 0.11 0.02 0.19	11329 5317 3112 1375 4219	0.66 0.04 0.02 0.02 0.05	0.29 0.02 0.02 0.01 0.08	0.55 0.24 0.05 0.01 0.08	0.11 0.13 0.13 0.1 0.064	0.998 1 1 1 0.45	1.88 2.27 2.27 1.71 1.16	0.69 0.03 0.03 0.91 0.01	2.08 2.63 2.63 2.49 1.72	0.81 0.8 0.8 0.85 0.54	0.08 0.21 0.19 0.18 0.056	0.17 0.49 0.53 0.37 0.06	1.8 4.53 5.17 4.09 1.07	0.09 0.41 0.49 0.39 0.09	0.07 0.33 0.36 0.37 0.02	0.19 0.47 0.41 0.36 0.12
10%	na.approx MI MICE missForest DTWUBI	0.18 0.1 0.04 0.02 0.05	1 0.35 0.13 0.05 0.21	11419 5892 3435 1990 4402	0.62 0.008 0.01 0.02 0.02	0.25 0.02 0.01 0.004 0.04	0.56 0.27 0.06 0.03 0.08	0.11 0.12 0.12 0.09 0.064	1 1 1 0.47	2.01 2.24 2.25 1.7 1.18	0.46 0.02 0.02 0.91 0	2.02 2.18 16.56 1.35 4.49	0.79 0.79 0.79 0.86 0.56	0.083 0.13 0.12 0.1 0.065	0.23 0.43 0.5 0.29 0.2	3.09 4.35 4.78 3.47 2.58	0.15 0.16 0.21 0.25 0.12	0.16 0.14 0.18 0.15 0.13	0.27 0.46 0.41 0.3 0.2

boundary : 1-FA2<0.2 |FB|<0.2 FSD<0.5

N0	Dataset name	N0 of instants	Correlation (No/Low/High)	Frequency
1	NNGC	1,745	High	Hourly
2	Simulation	32,000	No	
3	MAREL-Carnot	35,344	Low	Hourly

Visual comparison of imputed values of different imputation methods with true values on Marel Carnot dataset with the gap size of 353 on the 2nd signal.

Dealing with uncertainty - speed trade-off

FSBMI scheme. New similarity computation to select best similar windows

Simulated dataset (5 signals- 32,000 points)

Marel Carnot hourly dataset (3 signals- 35,334 points)

Gap	Method	Acc	uracy in	dices	S	hape indic	es	Gap	Ac	curacy in	dices	Sh	ape indic	es
size	Method	1-Sim	$1-R^2$	RMSE	FSD	FB	1-FA2	size	1-Sim	$1 - R^2$	RMSE	FSD	FB	1-FA2
	FSMUMI	0.049	0.071	0.027	0.069	0.505	0.184		0.059	0.058	1.466	0.094	0.101	0.183
	Amelia	0.197	0.998	0.147	0.045	1.305	0.792		0.171	0.44	4.389	0.287	0.2	0.456
	FcM	0.158	0.809	0.104	1.813	1.866	0.991		0.126	0.152	2.779	0.285	0.203	0.727
7.5%	MI	0.2	0.992	0.15	0.038	1.645	0.797	4%	0.166	0.41	4.234	0.277	0.204	0.444
	MICE	0.205	0.988	0.15	0.057	10.744	0.799	170	0.15	0.379	4.15	0.268	0.19	0.411
	missForest	0.188	0.97	0.136	0.284	4.396	0.812		0.129	0.234	3.134	0.23	0.187	0.303
	na.approx	0.192	0.971	0.142	0.669	2.163	0.712		0.077	0.13	2.006	0.068	0.135	0.268
	DTWUMI	0.133	0.653	0.908	0.064	1.113	0.571		0.07	0.105	1.77	0.15	0.12	0.138
120	FSMUMI	0.061	0.181	0.043	0.114	0.511	0.26		0.053	0.098	1.642	0.083	0.055	0.191
	Amelia	0.202	0.999	0.147	0.034	4.062	0.788		0.14	0.3	4.294	0.24	0.142	0.442
	FcM	0.164	0.872	0.104	1.837	2.201	0.992		0.1	0.098	3.68	0.136	0.101	0.303
10%	MI	0.21	0.997	0.155	0.12	2.954	0.785	10%	0.14	0.112	4.294	0.24	0.142	0.442
	MICE	0.209	0.996	0.15	0.055	3.994	0.779		0.12	0.42	4.066	0.152	0.077	0.383
	missForest	0.194	0.97	0.135	0.308	3.024	0.811		0.097	0.461	3.049	0.104	0.117	0.255
	na.approx	0.183	0.997	0.129	0.372	1.455	0.719		0.071	0.529	1.873	0.098	0.094	0.253
	DTWUMI	0.155	0.782	0.893	0.026	1.182	0.626		0.081	0.381	3.293	0.119	0.124	0.224

boundary : 1-FA2<0.2 |FB|<0.2 FSD<0.5

Other application: Near Future Prediction

Direct application : DTWBI for Forecasting Univariate TS

Documentation

Related Papers.

Univariate time series imputation

• DTWBI - Dynamic time warping-based imputation for univariate time series data. Pattern Recognit. Lett. 139: 139-147 (2020) https://doi.org/10.1016/j.patrec.2017.08.019

• eDTWBI - eDTWBI: Effective Imputation Method for Univariate Time Series

Advanced Computational Methods for Knowledge Engineering. ICCSAMA 2019. Advances in Intelligent Systems and Computing, vol 1121. Springer, https://doi.org/10.1007/978-3-030-38364-0_11

• Comparison of DTW variants for the imputation (Ocean'2017), Which DTW Method Applied to Marine Univariate Time Series Imputation https://doi.org/10.1109/OCEANSE.2017.8084598

Uncorrelated multivariate time series imputation

• DTWUMI (MLSP'2017), DTW-Approach for uncorrelated multivariate time series imputation. Machine Learning Signal Processing. https://doi.org/10.1109/MLSP.2017.816816

• FSMUMI (ACISC journal - 2018), A New Fuzzy Logic-Based Similarity Measure Applied to Large Gap Imputation for Uncorrelated Multivariate Time Series. <u>https://doi.org/10.1155/2018/9095683</u>

Applications to classification and forecasting

• Shape-feature extraction algorithm (ICCE'2016), Comparative study on supervised learning methods for identifying phytoplankton species. 10.1109/CCE.2016.7562650

• Forecasting meteorological univariate time series (EUSIPCO'2018) Comparative Study on Univariate Forecasting Methods for Meteorological Time Series. https://doi.org/10.23919/EUSIPCO.2018.8553576

CRAN pakages

https://cran.r-project.org/web/packages/DTWBI/index.html https://cran.r-project.org/web/packages/DTWUMI/index.html https://cran.r-project.org/web/packages/FSMUMI/index.html

Documentation: http://mawenzi.univ-littoral.fr/

Support: emilie.poisson@univ-littoral.fr

Other study:

- GAIN vs DTW-completion
- Adaptive system according signal characteristics (in progress)
- GUI interface (-> 2022)