
Deep Learning:
Convolutional Neural Networks (CNNs)

Manuel Sánchez-Montañés

Escuela Politécnica Superior, Universidad Autónoma de Madrid

Limitations of shallow neural networks

Shallow neural networks

Input Output Input Output

Input Output

Tabular data: one or two hidden layers are sufficient (with
nonlinear activation function).
The number of hidden neurons must be adjusted

Shallow neural networks

Data composed of a hierarchy of elements of the same
nature (images, texts, audio, time series, genetic
sequences, etc.):

Shallow neural networks do not generalize well on these
problems.
An architecture that extracts these relationships in the
data is needed.

Shallow neural networks

Deep Convolutional Neural Networks (CNNs)

Convolutional networks

Hierarchy of neuron layers

Google Talk by Jeff Dean at Seoul’s Campus, 7/3/2016

Convolutional networks

Example of a convolutional network (CNN)

https://developer.nvidia.com/discover/convolutional-neural-network
Image: Maurice Peemen

https://developer.nvidia.com/discover/convolutional-neural-network

Comparison of shallow versus convolutional
networks

Shallow models versus deep models

Demo

Shallow dense network:
https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html

Demo

Shallow dense network:
https://adamharley.com/nn_vis/mlp/3d.html

Convolucional neural network:
https://adamharley.com/nn_vis/cnn/3d.html

Shallow models versus deep models

https://adamharley.com/nn_vis/mlp/3d.html
https://adamharley.com/nn_vis/cnn/3d.html

Feature
Engineering

Non deep Machine
Learning
algorithm

Training dataset very time-consuming

Shallow models versus deep models

Deep Learning
algorithm

Training dataset

Non deep Machine
Learning
algorithm

Training dataset very time-consuming

Feature
Engineering

Shallow models versus deep models

Convolutional Neural Networks: Arquitecture

Architecture of a CNN

Architecture of a CNN

Feature extraction

Architecture of a CNN

Feature extraction Classification

https://developer.nvidia.com/discover/convolutional-neural-network
Image: Maurice Peemen

Architecture of a CNN

https://developer.nvidia.com/discover/convolutional-neural-network

Architecture of a CNN

Types of basic layers in a CNN

Types of basic layers

Convolutional layer

Pooling layer

Flattening layer

Dense layer

Convolutional layer

Convolutional layer

• They create "filtered" versions of the image that reaches them
• Each filter is focused on extracting a particular feature

0.
1

2 0

-1 2 0

-1 2 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Input image

Kernel 3x3
0 2 3 0 -1

0 2 5 -1 -1

0 0 6 -3 0

0 0 6 -3 0

0 0 4 -2 0

Filtered image

Pixels with higher value

0 if ReLU is applied

Convolutional layer

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·0 + 0·1

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·0 + 0·1 +
-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·0 + 0·1 +
-1·0 + 2·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·0 + 0·1 +
-1·0 + 2·0 + 0·0 = 0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·1

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·1 + 0·1

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·1 + 0·1 +
-1·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 ?
Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·1 + 0·1 +
-1·0 + 2·0

Convolutional layer

Input image Filtered image

-1 2 0

-1 2 0

-1 2 0
0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3

0 2

Filtered image

Calculation:

-1·0 + 2·0 + 0·0 +
-1·0 + 2·1 + 0·1 +
-1·0 + 2·0 + 0·1 = 2

Convolutional layer

Input image

-1 2 0

-1 2 0

-1 2 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Input image

Kernel 3x3
0 2 3 0 -1

0 2 5 -1 -1

0 0 6 -3 0

0 0 6 -3 0

0 0 4 -2 0

Convolutional layer

Filtered image

Note:
Each kernel has another parameter that is learned, the bias, which would be added to the final
calculation. In these examples we assume for simplicity that this constant is 0

-1 2 0

-1 2 0

-1 2 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Kernel 3x3
0 2 3 0 -1

0 2 5 -1 -1

0 0 6 -3 0

0 0 6 -3 0

0 0 4 -2 0

Filtered image

Convolutional layer

Input image

Convolutional layer

Convolutional layer
If ReLU is added:

Convolutional layer

-1 2 0

-1 2 0

-1 2 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Input image

Kernel 3x3
0 2 3 0 -1

0 2 5 -1 -1

0 0 6 -3 0

0 0 6 -3 0

0 0 4 -2 0

Filtered image
(before ReLU)

If ReLU is added:

0 2 3 0 0

0 2 5 0 0

0 0 6 0 0

0 0 6 0 0

0 0 4 0 0

Filtered image
(after ReLU)

Pooling layer

Pooling layer

• Pooling layer creates low-resolution versions of the images that reach it
• It forces the next layer to focus on extracting more global characteristics

Example: max-pooling layer

• Pooling layer creates low-resolution versions of the images that reach it
• It forces the next layer to focus on extracting more global characteristics
• It also adds robustness against image translations

Flattening layer

Flattening layer

The flattening layer (sometimes not represented as a separate
layer) converts a set of images into a single vector

Flattening layer

It is the transition between the feature extraction stage and
the classification stage, which operates with dense layers

Flattening layer
Example: if we have these images from a previous layer:

-1 0 3

2 4 -1

-1 2 1

3 0 6

4 2 0

2 1 9

5 2 4

2 1 5

3 4 1

-1 0 3 2 4 -1 -1 2 1 5 2 4 2 1 5 3 4 1 3 0 6 4 2 0 2 1 9

The flattening layer would transform them into a single vector:

The idea is that from that moment on, the processing will be
performed by dense layers (typical layers of shallow networks)

Flattening layer
Flattening can also be performed by averaging each image:

-1 0 3

2 4 -1

-1 2 1

3 0 6

4 2 0

2 1 9

5 2 4

2 1 5

3 4 1

1 3 3

In this case the flattening layer would transform them into:

In this case the simplification is greater but relevant information
may be lost

Dense layer

Dense layers

• These are the "typical" layers of non-deep (shallow) neural networks
• They take as input a vector and return a vector
• Each neuron processes all the outputs of the previous layer: many connections!

Creation of Convolutional Neural
Networks (CNNs) in Keras

60

https://developer.nvidia.com/discover/convolutional-neural-network
Imagen: Maurice Peemen

Deep Convolutional Neural Network (CNN)

https://developer.nvidia.com/discover/convolutional-neural-network

model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,),
 kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,),
 kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,),
 kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,),
 kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,),
 kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')

CNN: training

A subset (batch) of training examples
is taken, and for each weight the

following is checked:

Basic algorithm
How does a neural network learn?

If we increase the weight a little,
what would happen to the objective

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

A subset (batch) of training examples
is taken, and for each weight the

following is checked:

Basic algorithm
How does a neural network learn?

Each weight is updated against
sensitivity

If we increase the weight a little,
what would happen to the objective

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

A subset (batch) of training examples
is taken, and for each weight the

following is checked:

Basic algorithm
How does a neural network learn?

Each weight is updated against
sensitivity

A subset (batch) of training examples
is taken, and for each weight the

following is checked:

Basic algorithm

If we increase the weight a little,
what would happen to the objective

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

How does a neural network learn?

Complete algorithm

1.Divide the training set into parts of the same size: "batches"

2.Apply the basic algorithm once for each of the batches ("epoch")

3.Return to step 1 if stop criteria are not met

Other aspects to take
into account

• Important: inputs to the model must be normalized, they
should not exceed the interval [-1, 1]

• If the model is a regression model, the target should also be
normalized and should not exceed the interval [-1, 1]

Data normalization

Training monitoring
Training monitoring gives us a lot of information

Overfitting

Degradation

Techniques for
controlling overfitting

- Neural network "memorizes" training data, generalizes poorly

- This is because it has too many parameters for the volume of
training data

Overfitting in CNNs

Techniques to avoid overfitting
•Minimize network complexity

•Regularization of weights

•Monitoring of overfitting and early stopping

•Data Augmentation

•Dropout

•Transfer Learning

Techniques to avoid overfitting

• Minimize network complexity

- Start with simple networks, with few parameters: few
filters in convolutional layers, few neurons in dense layers,
etc.

- The "bottleneck" (large number of connections) is usually
between the flattening and the first dense layer: try to
minimize the size of the flattening

Techniques to avoid overfitting
-Regularization

-The idea is to reward many weights close to or equal to zero
("pruning")

-Typical mechanisms: introduction of regularization L1, L2 or a
mixture of the two in each layer where "pruning" is desired.

-The regularization factor must be adjusted (neither too large nor too
small)

-L1 is more aggressive than L2

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Techniques to avoid overfitting
-Regularization hiperparameters

- Regularization type (L1, L2, mixed, no regularization)

- Regularization strength

- In which layers to apply it

Techniques to avoid overfitting

- Monitoring of overfitting and early stopping

Idea: stop training when the error in
validation stagnates or begins to increase

Another strategy: let the training run but
save to file the network if in validation it
improves. At the end of the training, load
the network from file

Techniques to avoid overfitting
-Data Augmentation

-The idea is to create variants of the available data by means
of manipulations

-Images: rotations, translations, zooms, changes in contrast,
brightness etc.

Techniques to avoid overfitting

-Data Augmentation

Original image

Techniques to avoid overfitting
-Data Augmentation

-Audio: shorten, lengthen, change pitch, introduce noise, etc.

Techniques to avoid overfitting
- Data Augmentation: hyperparameters

- Types of transformations to be applied
- Magnitude of these transformations

Techniques to avoid overfitting
-Dropout

-The idea is to introduce noise at those points in the network
where there is an excess of information.

-In this way we force the network to focus not on small details
but on global properties.

Techniques to avoid overfitting
-Dropout

No dropout

rate=0.1 rate=0.2

rate=0.5 rate=0.7

Techniques to avoid overfitting

- Dropout: hyperparameters

- Dropout quantity (rate): minimum: 0 (no dropout); maximum: 1

- Parts of the network where this effect can be introduced

- It is usually introduced before layers that process large
amounts of data

Techniques to avoid overfitting

-Transfer Learning: take another system trained on another
dataset and use parts of it in the network.

-Images: typically, we download a network trained on a
similar domain, keep the feature extraction part and add
our classification layers

Techniques to avoid overfitting

Extracción de características Clasificación

-Transfer Learning with images
-Example: VGG16

Techniques to avoid overfitting
- Some pre-trained CNNs that can be found on the Internet:

- Xception
- VGG16, VGG19
- ResNet, ResNetV2
- InceptionV3
- InceptionResNetV2
- MobileNet
- MobileNetV2
- DenseNet
- NASNet

Techniques to avoid overfitting
-Transfer Learning

- In texts: e.g., download embeddings (word representations)
trained in other similar domains.

- For example:

-word2vec (implemented in Python Gensim library)
-GloVe: https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

Interpretability in
CNNs

Heatmaps: first idea
How to calculate a heatmap? (sensitivity to image zones)
One option is to analyze how the prediction changes as individual
pixels change

CNN

How does
altering that
pixel change

the
prediction?

Problem:

It makes no sense to change individual pixels in the image, it is
not natural

Heatmaps: first idea
How to calculate a heatmap? (sensitivity to image zones)
One option is to analyze how the prediction changes as individual
pixels change

•The last convolutional layer is the last layer that works with images
•In AlexNet this layer extracts 256 images of 13x13 pixels. That is, 256
filtered versions of the original image (224x224 pixels)

•Each of these 13x13 pixels represents information extracted from at least
224/13x224/13 = 17x17 input pixels

Alex Net
Heatmaps: second idea

Heatmaps: Gradcam
1- Passing the image over the network

2- Finding the most active output neuron N (most likely
class)

3- Calculate how the output of N changes if there are small
changes in the different output pixels of the last
convolutional layer C

3- Averaging and weighing with the output pixels of C

4- Normalize and draw

Heatmaps: Gradcam

Class: CAT

Heatmaps: Gradcam

Class: DOG Class: CHILD

Heatmaps:
applications

Heatmaps: Detection of biases in the dataset

Predicted class:
DOG The network

has learned
"if there is
weed ->
DOG" !!!

Predicted class:
DOG

Objective: TO ASSIST (not replace) medical personnel

Example: Lung pathology detection

Utility in medical decision support systems

Specialist

Error

Example: Breast cancer screening

• Staff from Harvard Medical School's Beth
Israel Deaconess Medical Center (BIDMC)

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems

AI

Error

• Staff from Harvard Medical School's Beth
Israel Deaconess Medical Center (BIDMC)

• The neural network was trained with millions of
labeled images

• The network assigns to each part of the image
the probability that it contains evidence of
cancer

Specialist

Example: Breast cancer screening

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems

IA Specialist
+ AI

Error

• Staff from Harvard Medical School's Beth
Israel Deaconess Medical Center (BIDMC)

• The neural network was trained with millions of
labeled images

• The network assigns to each part of the image
the probability that it contains evidence of
cancer

• Probability maps are created that can be
interpreted by medical staff

Specialist

Example: Breast cancer screening

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems

Deep Learning:
Convolutional Neural Networks (CNNs)

Manuel Sánchez-Montañés

Escuela Politécnica Superior, Universidad Autónoma de Madrid

