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Limitations of shallow neural networks



Shallow neural networks
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Tabular data: one or two hidden layers are sufficient (with 
nonlinear activation function). 
The number of hidden neurons must be adjusted

Shallow neural networks



Data composed of a hierarchy of elements of the same 
nature (images, texts, audio, time series, genetic 
sequences, etc.): 

Shallow neural networks do not generalize well on these 
problems. 
An architecture that extracts these relationships in the 
data is needed.

Shallow neural networks



Deep Convolutional Neural Networks (CNNs)



Convolutional networks

Hierarchy of neuron layers

Google Talk by Jeff Dean at Seoul’s Campus, 7/3/2016



Convolutional networks



Example of a convolutional network (CNN)

https://developer.nvidia.com/discover/convolutional-neural-network 
Image: Maurice Peemen

https://developer.nvidia.com/discover/convolutional-neural-network


Comparison of shallow versus convolutional 
networks



Shallow models versus deep models

Demo 

Shallow dense network: 
https://adamharley.com/nn_vis/mlp/3d.html

https://adamharley.com/nn_vis/mlp/3d.html


Demo 

Shallow dense network: 
https://adamharley.com/nn_vis/mlp/3d.html 

Convolucional neural network: 
https://adamharley.com/nn_vis/cnn/3d.html

Shallow models versus deep models

https://adamharley.com/nn_vis/mlp/3d.html
https://adamharley.com/nn_vis/cnn/3d.html


Feature 
Engineering

Non deep Machine 
Learning 
algorithm

Training dataset very time-consuming

Shallow models versus deep models



Deep Learning 
algorithm

Training dataset

Non deep Machine 
Learning 
algorithm

Training dataset very time-consuming

Feature 
Engineering

Shallow models versus deep models



Convolutional Neural Networks: Arquitecture



Architecture of a CNN



Architecture of a CNN

Feature extraction



Architecture of a CNN

Feature extraction Classification



https://developer.nvidia.com/discover/convolutional-neural-network 
Image: Maurice Peemen

Architecture of a CNN

https://developer.nvidia.com/discover/convolutional-neural-network


Architecture of a CNN



Types of basic layers in a CNN



Types of basic layers

Convolutional layer 

Pooling layer 

Flattening layer 

Dense layer



Convolutional layer



Convolutional layer

• They create "filtered" versions of the image that reaches them 
• Each filter is focused on extracting a particular feature
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Note: 
Each kernel has another parameter that is learned, the bias, which would be added to the final 
calculation. In these examples we assume for simplicity that this constant is 0
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Convolutional layer



Convolutional layer
If ReLU is added:



Convolutional layer

-1 2 0

-1 2 0

-1 2 0

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

Input image

Kernel 3x3
0 2 3 0 -1

0 2 5 -1 -1

0 0 6 -3 0

0 0 6 -3 0

0 0 4 -2 0

Filtered image 
(before ReLU)

If ReLU is added:

0 2 3 0 0

0 2 5 0 0

0 0 6 0 0

0 0 6 0 0

0 0 4 0 0

Filtered image 
(after ReLU)



Pooling layer



Pooling layer

• Pooling layer creates low-resolution versions of the images that reach it 
• It forces the next layer to focus on extracting more global characteristics



Example: max-pooling layer

• Pooling layer creates low-resolution versions of the images that reach it 
• It forces the next layer to focus on extracting more global characteristics 
• It also adds robustness against image translations



Flattening layer



Flattening layer

The flattening layer (sometimes not represented as a separate 
layer) converts a set of images into a single vector



Flattening layer

It is the transition between the feature extraction stage and 
the classification stage, which operates with dense layers



Flattening layer
Example: if we have these images from a previous layer:
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The flattening layer would transform them into a single vector:

The idea is that from that moment on, the processing will be 
performed by dense layers (typical layers of shallow networks)



Flattening layer
Flattening can also be performed by averaging each image:
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In this case the flattening layer would transform them into:

In this case the simplification is greater but relevant information 
may be lost



Dense layer



Dense layers

• These are the "typical" layers of non-deep (shallow) neural networks 
• They take as input a vector and return a vector 
• Each neuron processes all the outputs of the previous layer: many connections!



Creation of Convolutional Neural 
Networks (CNNs) in Keras 



60

https://developer.nvidia.com/discover/convolutional-neural-network 
Imagen: Maurice Peemen

Deep Convolutional Neural Network (CNN)

https://developer.nvidia.com/discover/convolutional-neural-network


model = Sequential()
model.add(Conv2D(filters=4, input_shape=(32,32,1,), 
          kernel_size=(5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=10,kernel_size=(5,5),activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
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CNN: training



A subset (batch) of training examples 
is taken, and for each weight the 

following is checked:

Basic algorithm
How does a neural network learn?



If we increase the weight a little, 
what would happen to the objective 

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

A subset (batch) of training examples 
is taken, and for each weight the 

following is checked:

Basic algorithm
How does a neural network learn?



Each weight is updated against 
sensitivity

If we increase the weight a little, 
what would happen to the objective 

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

A subset (batch) of training examples 
is taken, and for each weight the 

following is checked:

Basic algorithm
How does a neural network learn?



Each weight is updated against 
sensitivity

A subset (batch) of training examples 
is taken, and for each weight the 

following is checked:

Basic algorithm

If we increase the weight a little, 
what would happen to the objective 

function (cost)?
It increases: positive sensitivity

It decreases: negative sensitivity

How does a neural network learn?



Complete algorithm

1.Divide the training set into parts of the same size: "batches" 

2.Apply the basic algorithm once for each of the batches ("epoch") 

3.Return to step 1 if stop criteria are not met



Other aspects to take 
into account



• Important: inputs to the model must be normalized, they 
should not exceed the interval [-1, 1] 

• If the model is a regression model, the target should also be 
normalized and should not exceed the interval [-1, 1]

Data normalization



Training monitoring
Training monitoring gives us a lot of information

Overfitting

Degradation



Techniques for 
controlling overfitting



- Neural network "memorizes" training data, generalizes poorly 

- This is because it has too many parameters for the volume of 
training data

Overfitting in CNNs



Techniques to avoid overfitting
•Minimize network complexity 

•Regularization of weights

•Monitoring of overfitting and early stopping

•Data Augmentation

•Dropout

•Transfer Learning



Techniques to avoid overfitting

• Minimize network complexity 

- Start with simple networks, with few parameters: few 
filters in convolutional layers, few neurons in dense layers, 
etc. 

- The "bottleneck" (large number of connections) is usually 
between the flattening and the first dense layer: try to 
minimize the size of the flattening



Techniques to avoid overfitting
-Regularization 

-The idea is to reward many weights close to or equal to zero 
("pruning") 

-Typical mechanisms: introduction of regularization L1, L2 or a 
mixture of the two in each layer where "pruning" is desired. 

-The regularization factor must be adjusted (neither too large nor too 
small) 

-L1 is more aggressive than L2

https://playground.tensorflow.org/

https://playground.tensorflow.org/


Techniques to avoid overfitting
-Regularization hiperparameters 

- Regularization type (L1, L2, mixed, no regularization) 

- Regularization strength 

- In which layers to apply it



Techniques to avoid overfitting

- Monitoring of overfitting and early stopping

Idea: stop training when the error in 
validation stagnates or begins to increase

Another strategy: let the training run but 
save to file the network if in validation it 
improves. At the end of the training, load 
the network from file



Techniques to avoid overfitting
-Data Augmentation 

-The idea is to create variants of the available data by means 
of manipulations 

-Images: rotations, translations, zooms, changes in contrast, 
brightness etc.



Techniques to avoid overfitting

-Data Augmentation

Original image



Techniques to avoid overfitting
-Data Augmentation 

-Audio: shorten, lengthen, change pitch, introduce noise, etc.



Techniques to avoid overfitting
- Data Augmentation: hyperparameters 

- Types of transformations to be applied 
- Magnitude of these transformations



Techniques to avoid overfitting
-Dropout 

-The idea is to introduce noise at those points in the network 
where there is an excess of information. 

-In this way we force the network to focus not on small details 
but on global properties.



Techniques to avoid overfitting
-Dropout

No dropout

rate=0.1 rate=0.2

rate=0.5 rate=0.7



Techniques to avoid overfitting

- Dropout: hyperparameters 

- Dropout quantity (rate): minimum: 0 (no dropout); maximum: 1 

- Parts of the network where this effect can be introduced 

- It is usually introduced before layers that process large 
amounts of data



Techniques to avoid overfitting

-Transfer Learning: take another system trained on another 
dataset and use parts of it in the network. 

-Images: typically, we download a network trained on a 
similar domain, keep the feature extraction part and add 
our classification layers



Techniques to avoid overfitting

Extracción de características Clasificación

-Transfer Learning with images 
-Example: VGG16



Techniques to avoid overfitting
- Some pre-trained CNNs that can be found on the Internet: 

-    Xception 
-    VGG16, VGG19 
-    ResNet, ResNetV2 
-    InceptionV3 
-    InceptionResNetV2 
-    MobileNet 
-    MobileNetV2 
-    DenseNet 
-    NASNet



Techniques to avoid overfitting
-Transfer Learning 

- In texts: e.g., download embeddings (word representations) 
trained in other similar domains. 

- For example: 

-word2vec (implemented in Python Gensim library) 
-GloVe: https://nlp.stanford.edu/projects/glove/ 

https://nlp.stanford.edu/projects/glove/


Interpretability in 
CNNs



Heatmaps: first idea
How to calculate a heatmap? (sensitivity to image zones) 
One option is to analyze how the prediction changes as individual 
pixels change

CNN

How does 
altering that 
pixel change 

the 
prediction?



Problem:

It makes no sense to change individual pixels in the image, it is 
not natural

Heatmaps: first idea
How to calculate a heatmap? (sensitivity to image zones) 
One option is to analyze how the prediction changes as individual 
pixels change



•The last convolutional layer is the last layer that works with images 
•In AlexNet this layer extracts 256 images of 13x13 pixels. That is, 256 
filtered versions of the original image (224x224 pixels) 

•Each of these 13x13 pixels represents information extracted from at least 
224/13x224/13 = 17x17 input pixels

Alex Net
Heatmaps: second idea



Heatmaps: Gradcam
1-  Passing the image over the network

2- Finding the most active output neuron N (most likely 
class)

3- Calculate how the output of N changes if there are small 
changes in the different output pixels of the last 
convolutional layer C

3- Averaging and weighing with the output pixels of C

4- Normalize and draw



Heatmaps: Gradcam

Class: CAT



Heatmaps: Gradcam

Class: DOG Class: CHILD



Heatmaps: 
applications



Heatmaps: Detection of biases in the dataset

Predicted class: 
DOG The network 

has learned 
"if there is 
weed -> 
DOG" !!!

Predicted class: 
DOG



Objective: TO ASSIST (not replace) medical personnel

Example: Lung pathology detection

Utility in medical decision support systems



Specialist

Error

Example: Breast cancer screening

• Staff from Harvard Medical School's Beth 
Israel Deaconess Medical Center (BIDMC)

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems



AI

Error

• Staff from Harvard Medical School's Beth 
Israel Deaconess Medical Center (BIDMC)

• The neural network was trained with millions of 
labeled images

• The network assigns to each part of the image 
the probability that it contains evidence of 
cancer

Specialist

Example: Breast cancer screening

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems



IA Specialist
+ AI

Error

• Staff from Harvard Medical School's Beth 
Israel Deaconess Medical Center (BIDMC)

• The neural network was trained with millions of 
labeled images

• The network assigns to each part of the image 
the probability that it contains evidence of 
cancer

• Probability maps are created that can be 
interpreted by medical staff

Specialist

Example: Breast cancer screening

Objective: TO ASSIST (not replace) medical personnel
Utility in medical decision support systems
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