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Kernel-Based Regression Models

• In several application domains, a nonlinear model has to be fitted to
data samples generated by nonlinear phenomena.

• This a very demanding task because there are many alternatives out
there, such as neural networks, polinomial model, Gaussian process
(GP) models, and so on.

• A natural (or would it be unnatural?) alternative involves kernel
based models, such as support vector regression.
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Kernel-Based Regression Models

• The least squares support vector regression (LSSVR) and the kernel
ordinary least squares (KOLS) 1 models are very competitive tools for
nonlinear regression tasks.

• It is easy to understand their backgrounds from the basic concepts of
linear regression and least squares estimation.

• Kernel models build a linear model in the feature (rkhs) space using
an unknown nonlinear mapping ϕ.

1
Suykens, J. A. K. et al. Least Squares Support Vector Machines. New Jersey, USA: World Scientific, 2002.
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General and Specific Objectives

General Objective

The overall objective of this talk is to introduce kernel-based nonlinear
regression models and their applications to time series forecasting.

Specific Objectives

1 To describe the basics of the LSSVR model.

2 To describe the basics of the kernel ordinary least squares (KOLS).

3 To describe the basics of the kernel regularized least squares (KRELS).

4 To discuss Octave/Matlab codes of the aforementioned models.

5 To present some applications on time series forecasting.
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LSSVR Primal Problem

• Given an estimation (a.k.a. training) dataset D = {xn , yn}Nn=1, with
xn ∈ Rd and yn ∈ R, the kernel regression problem is given by

f (xn) = w⊤ϕ(xn) + b, (1)

where w ∈ Rdh is the unknown parameter vector, b ∈ R is a bias and
ϕ(·) : Rd → Rdh is a nonlinear map into the feature space.

• The primal optimization problem of the LSSVR model is given by

min
w ,b,e

Jp(w , e) =
1

2
∥w∥2︸ ︷︷ ︸

smoothness

+ γ
1

2

N∑
n=1

e2n︸ ︷︷ ︸
training errors

, (2)

subject to
{

yn = w⊤ϕ(xn) + b + en , for n = 1, . . . ,N , (3)

where γ is the regularization parameter and en is the n-th error.
9 / 30
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LSSVR Dual Problem

• The LSSVR dual problem is obtained by building the Lagrangian, as

L (w , b, e ,α) :=
1

2
∥w∥2+γ

1

2

N∑
n=1

e2n−
N∑

n=1

αn(w
⊤ϕ(xn)+b+en−yn),

(4)
where αn are the Lagrange multipliers.

• From the optimality conditions2, one gets[
0 1⊤N
1N K + γ−1IN

]
︸ ︷︷ ︸

Ω

[
b
α

]
︸︷︷︸
αo

=

[
0
y

]
︸︷︷︸
yo

. (5)

• K ∈ RN×N is the kernel matrix, whose entries are

Ki ,j := k(xi ,xj ) = ϕ(xi)
⊤ϕ(xj ), for i , j = 1, . . . ,N , (6)

where k(·, ·) is the chosen kernel function.
2
FLETCHER, R. Practical methods of optimization. New Jersey, USA: John Wiley & Sons, 2013.
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The Kernel Matrix

• The kernel matrix K = [Ki ,j ]N×N is defined as

K =


ϕ(x1)

⊤ϕ(x1) ϕ(x1)
⊤ϕ(x2) · · · ϕ(x1)

⊤ϕ(xN )
ϕ(x2)

⊤ϕ(x1) ϕ(x2)
⊤ϕ(x2) · · · ϕ(x2)

⊤ϕ(xN )
...

... · · ·
...

ϕ(xN )⊤ϕ(x1) ϕ(xN )⊤ϕ(x2) · · · ϕ(xN )⊤ϕ(xN )


N×N

(7)

=


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
... · · ·

...
k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


N×N

(8)
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The Kernel Matrix

• The kernel matrix K must be positive-definite.

• It is a Gram matrix; that is, a matrix of dot products.

• It is symmetric. Thus, its computation can be optimized for speed.

• There are lots of kernel functions that can be used.
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The Kernel Matrix

• The linear kernel function: k(xi ,xj ) = x⊤
i xj .

• The Gaussian (or RBF) kernel function:

k(xi ,xj ) = exp

(
−∥xi − xj ∥2

2λ2

)
, (9)

where λ > 0 is the width of the function.

• The polynomial kernel function:

k(xi ,xj ) = (c + x⊤
i xj )

d , (10)

where c is a constant and d ≥ 1 is the order of the polynomial.

• The sigmoidal (or MLP) kernel function:

k(xi ,xj ) = tanh(ax⊤
i xj + r), (11)

where a (slope) and r (bias) are constants.
13 / 30
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LSSVR Dual Problem

• Kernel-based predictors:

f (x ) = w⊤ϕ(x ) + b,︸ ︷︷ ︸
primal space

(12)

or

f (x ) =
N∑

n=1

αnk(x ,xn) + b,

= α⊤K (x ,D) + b.︸ ︷︷ ︸
dual space

(13)
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The KOLS Models

• The KRLS model (f (xi) = ϕ⊤(xi)w) minimizes the cost function

J (w) =

N∑
i=1

(yi − f (xi))
2 = ∥y −Φ⊤w∥2, (14)

which can be rewritten as

J (α) = ∥y −Ktα∥2. (15)

where K = Φ⊤Φ is the kernel matrix built using the N training
samples.

• Theoretically, the KOLS model solution can be given by α = K−1y ,
by simply setting b = 0 and γ → ∞ in Eq. (5).
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Sparsifying the KOLS Model

• As mentioned before, the size of the kernel matrix and, hence, the
dimension of the vector of parameters α is determined by the number
of training samples {(xi , yi)}Ni=1.

• To avoid inversion of huge kernel matrices, we must use some kind of
spasification method to select a subset of relevant sample pairs to
compose a dictionary.

• In the ALD3 criterion, when a new incoming sample xt is available,
one must verify if ϕ(xt) is ALD on the dictionary Dsv

t−1 = {x̃j }mt−1
j=1 .

• One should estimate a = [a1, . . . , amt−1 ]
⊤ satisfying the ALD criterion

δt ≜ min
a

∥∥∥∥∥
mt−1∑
m=1

amϕ(x̃m)− ϕ(xt)

∥∥∥∥∥
2

≤ ν, (16)

where ν is the sparsity level (hyper-)parameter.
3
ENGEL, Y.; MANNOR, S.; MEIR, R. Sparse online greedy support vector regression. In: ELOMAA, T.; MANNILA, H.;

TOIVONEN, H. (Ed.). Proceedings of the 13th European Conference on Machine Learning (ECML’2002). Helsinki, Finland,
2002. p. 84-96.
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a

∥∥∥∥∥
mt−1∑
m=1

amϕ(x̃m)− ϕ(xt)

∥∥∥∥∥
2

≤ ν, (16)

where ν is the sparsity level (hyper-)parameter.
3
ENGEL, Y.; MANNOR, S.; MEIR, R. Sparse online greedy support vector regression. In: ELOMAA, T.; MANNILA, H.;

TOIVONEN, H. (Ed.). Proceedings of the 13th European Conference on Machine Learning (ECML’2002). Helsinki, Finland,
2002. p. 84-96.
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Sparsifying the KOLS Model

• In terms of the kernel matrix, the Eq. (16) can be rewritten as

at = K̃−1
t−1k̃t−1(xt), and δt = ktt − k̃t−1(xt)

⊤at ≤ ν, (17)

where ν is the sparsity level parameter. The 1st element in the
dictionary is chosen at random.

• Once a pass of the ALD criterion is concluded, we can rewrite the
problem as

J (α̃) = ∥ỹ − ÃK̃ α̃∥2, (18)

where Ã = [a1 a2 . . . amt ]
⊤ ∈ Rt×mt and α̃ ∈ Rmt .

• Then, computing ∂J (α̃)/∂α̃ = 0, one gets

α̃ = K̃−1P̃Ã⊤ỹ , (19)

where P̃ = (Ã⊤Ã)−1.
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where Ã = [a1 a2 . . . amt ]
⊤ ∈ Rt×mt and α̃ ∈ Rmt .

• Then, computing ∂J (α̃)/∂α̃ = 0, one gets

α̃ = K̃−1P̃Ã⊤ỹ , (19)
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Computational Experiments - Laser Time Series

Dataset Task Prediction Type N N ′ L̂u L̂y

Laser Time series prediction Free Simulation 1,000 100/500 - 50

• The chaotic laser time series4 5 is a benchmarking dataset with a
total of 10,093 samples.

• Scenarios of test: (i) using the next 100 samples;
(ii) using the next 500 samples.

4
GERSHENFELD, N. A.; WEIGEND, A. S. The future of time series. In: WEIGEND, A. S.; GERSHENFELD, N. A. (Ed.).

Times Series Prediction: Forecasting the Future and Understanding the Past. Reading, MA: Addison-Wesley, 1993.
5
Available for download at www-psych.stanford.edu/$\sim$andreas/Time-Series/SantaFe.html.
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Computational Experiments - Laser Time Series

(a) RMSE values. (b) KRLS and OS-LSSVR.

(c) LSSVR. (d) OS-LSSVR.
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Computational Experiments - Monthly Rainfall

• Average monthly rainfall at the seashore of Fortaleza from 1983 to
2021.

• Training (1983-2016), Validation (2017-2020), Testing (2021).

• Validation for model selection and Testing for actual prediction.

• Validation and Testing in free simulation mode (recursive prediction).

• Initial 8 regressor values taken from 1982.
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Computational Experiments - Monthly Rainfall

Figure 1: Predicted time series in free simulation mode.
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Computational Experiments - Monthly Rainfall

(a) Predicted Rainfall. (b) Relative Error.

Figure 2: Results for the KNLMS model.
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Computational Experiments - Monthly Rainfall

(a) Predicted Rainfall. (b) Relative Error.

Figure 3: Results for the KRLS model.
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Computational Experiments - Monthly Rainfall

(a) Predicted Rainfall. (b) Relative Error.

Figure 4: Results for the SPOCK model.
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Conclusions

• We have introduced some kernel-based nonlinear regression models.

• These models were successfully applied to time series forecasting.

• They can be made more compact by means of sparsification
techniques, such as the ALD.

• They can be easily extended to online learning.

• They can be extended in order to handle outlier in the data.
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