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Introduction 
● Internship work with LISIC & IFREMER 

− by Martin Cabotte (Master 1, in ULCO’s engineering school) 

● Collaboration with IFREMER (France) 
− Application in marine resources monitoring  

● Phytoplancton analysis (INTERREG project Dymaphy) 
● Time series of water features (Jerico-Next H2020) 

● LISIC Lab (Calais, France) 
− Semi/Unsupervised Classification, Spectral clustering, Fuzzy and Evidence theories 
− A Multi-level Spectral Clustering method: MSC (Poisson-Caillault, Grassi) 

● Questions: 
− May fuzzy or evidential framework improve multilevel clustering? 
− Which areas for improving multilevel clustering?  3 



Multilevel Clustering Approach 
● Recursive process 
● Multi-scale approach 
● Key features, for each 

subdivision 
− Split (cut) criteria 

→ decision to subdivise  
− Cluster number (K) 

estimation 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Multilevel Clustering – Split-Criteria 
● Crisp split-criteria (a priori) 

− Silhouette (P. Rousseeuw, 1987) 

 
 
 
 

 
− Degrees of cohesion + separation 

● If  Degree > Threshold Then Stop split 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Multilevel Clustering – Split-Criteria 
● Soft split-criterion (Campello, Hruschka) 

 
 

● Proposed soft split-criteria (a posteriori) 
− Degrees of Non-ambiguity → Separation only 

 
 

 
− Averaged over all clusters: Mass100 and Mass25 

● If  Degree > Threshold Then Split (that is: keep the clustering done) 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Multilevel Clustering – Spectral Embedding 

● To deal with non-linearly separable or non-globular 
clusters 
− Spectral Embedding = Spectral Clustering - K-means 
− Aims at:  

● Concentrating similar objects 
● Making more suitable methods of the K-means family  

− Computation: at each subclustering 
● Requires K as input 
● But it may be estimated by some specific methods 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Multilevel Clustering – K estimations 
● Initial features space 

− A posteriori estimation of K 
● Set as the number between 2 and 10 which maximizes the global 

Silhouette measure of the partition obtained 

● Spectral space 
− K obtained from the spectral embedding computation 

● K = Number of “top” eigenvalues 
● K = Dimension of the embedded space 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Comparison Protocol 
● Algorithms 

− Direct (crisp + soft) 
● K-means (KM), c-means (CM), 

Evidential-cmeans (ECM) 
− Hierarchical 

● Ward-HClustering, HDBSCAN 
− Multilevel 

● Recursive « Direct » algorithms 

● For each algorithm, 2 
spaces considered 
− Initial features space 
− Spectral embedding space 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Comparison Protocol: Quality Criteria 
● Comparison to the ground-truth classes 

− For ML methods: “terminal subclusters” only 

● Unsupervised criteria 
− Adjusted Rand Index: corrected for-chance Rand Index 
− “Non-overlap” score 

● part of the Rand Index which counts the number of pairs of separated points 
(distinct classes) which are – correctly - assigned to distinct clusters 

● “Supervised” criteria 
− Precision:                                                           Recall: 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Comparison Protocol: Parameters Tuning 
● Direct + Hierarchical clusterings 

−  K = ground-truth K* 

● ML-clusterings 
− For each clustering, K is not tuned but estimated 
− Terminal K is set as close as possible to ground-truth K*, by a 

split-criterion tuning  
● Threshold domain is sampled in 20 values, and best value is kept: 

 

● HDBSCAN 
−  Similar method to tune its minPoints parameter 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Comparison Protocol: 3 Datasets 
● (A) Aggregation 

− ~ Globular clusters 
− Small vs large clusters 
− Some contacts between 

clusters 

● (B) Coumpound 
− Hierarchical structure 

● 3 x 2 clusters 

● (C) 6-Bananas 
− High ambiguity 

● 3 x 2 neighbouring bananas 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Results and Analysis 
● Aggregation & Coumpound Results 

− Spectral space 
● when the final K remains close enough to ground-truth K* 

− ML performs well 
− soft ML-Cmeans slightly outperforms ML-Kmeans, particularly with the 

Mass criteria 
− Initial space 

● Aggregation: direct methods and Ward-HC are better here 
● Coumpound: ML-CM and ML-ECM perform best (with criteria Mass100) 

− Limits of CardSil (K<K*), and also Silhouette & Fuzzy Silhouette 
(K>>K*) 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Results and Analysis 
● 6-bananas dataset Results 

− No true success (complex dataset: non-separability + noise) 
− Spectral space 

● direct methods and Ward-HC are better here 
− The ambiguity between pairs of bananas is too high, this disturbs the 

estimation of the spectral space dimension = K 
− Initial space 

● Ward-HC is best 
● ML-CM and ML-KM are not far away 

− Mass criteria: less overclustering than Fuzzy Silhouette 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Conclusion 
● Toy datasets, not so easy 

− Some clusters are nested, very close to each other, noisy 
− This makes the estimation of K and the decision to split hard (for each 

sub-clustering of ML methods) 
● A lot of “overclusterings” in ML methods, which leads to low quality scores 
● Non-ML methods do not suffer from this drawback (input) 

● Compared to ML-KM, soft ML-CM and ML-ECM can improve results 
(Coumpound, Aggregate) 

● Split-criteria 
− Silhouette variants seems to not perform very well 
− Mass criteria help avoiding overclustering 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Future works 
● Towards soft clustering, with split & merge process 

− Here overclustering is a drawback; but a merge process should be able to rebuild 
fragmented classes 

● This is indicated by the good “non-overlap” scores: points in a same cluster tend to belong to the 
same class 

− Use more soft information, by subclustering points with a weight equal to their 
non-ambiguity; then re-assign ambiguous points 

● Test other split-criteria, and improve the research of the optimal thresholds 
− Obtained K should be contrained to be closer to ground-truth K* 

● Improve agreement measurement between ML-clustering and simple clustering 

● Look for more convenient ECM methods 
− Compared to C-means, ECM tends to push cluster centers to the border of the space 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Future works 
● ECM Drawback: center space is empty  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Results: initial space 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Results: spectral space 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